Leitfaden zur Überwachung von Biogasanlagen
Ein Leitfaden zur immissionsschutzrechtlichen Überwachung des Emissionszustandes von genehmigungspflichtigen Biogasanlagen nach dem Bundesimmissionsschutzgesetz

Waldemar Schavkan

<table>
<thead>
<tr>
<th></th>
<th>Einleitung ..</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Inhalt und Zweck des Leitfadens ..</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Anwendungsbereich ..</td>
<td>8</td>
</tr>
<tr>
<td>3.1</td>
<td>Allgemein ...</td>
<td>8</td>
</tr>
<tr>
<td>3.2</td>
<td>rechtlicher Rahmen ..</td>
<td>8</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Normenhierarchie ..</td>
<td>8</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Bundesgesetze und Bundesrechtsverordnungen ..</td>
<td>9</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Allgemeine Verwaltungsvorschriften und Erlasse ..</td>
<td>11</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Technische Regelwerke ..</td>
<td>11</td>
</tr>
<tr>
<td>3.3</td>
<td>Technik ...</td>
<td>12</td>
</tr>
<tr>
<td>3.4</td>
<td>Emissionen ...</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>Allgemeine Vorgehensweise ...</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>Mögliche Emissionsquellen und deren Überwachung ...</td>
<td>14</td>
</tr>
<tr>
<td>5.1</td>
<td>Substratanlieferung ...</td>
<td>15</td>
</tr>
<tr>
<td>5.2</td>
<td>Substratlagerung ..</td>
<td>17</td>
</tr>
<tr>
<td>5.3</td>
<td>Substrataufbereitung ..</td>
<td>19</td>
</tr>
<tr>
<td>5.4</td>
<td>Substrateinbringung ...</td>
<td>21</td>
</tr>
<tr>
<td>5.5</td>
<td>Fermentation ...</td>
<td>23</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Gasausritte an gasführenden Teilen und Behältern mit Gasinhalt ..</td>
<td>23</td>
</tr>
<tr>
<td>5.5.2</td>
<td>zusätzliche Gasverbrauchseinrichtung ...</td>
<td>25</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Über- und Unterdrucksicherungen ...</td>
<td>26</td>
</tr>
<tr>
<td>5.5.4</td>
<td>Kondensatabscheider ...</td>
<td>28</td>
</tr>
<tr>
<td>5.6</td>
<td>Biogasverwertung ..</td>
<td>29</td>
</tr>
<tr>
<td>5.6.1</td>
<td>BHKW, Gaskessel, Gasturbine ..</td>
<td>29</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Biogasauflbereitung (BGAA) ..</td>
<td>30</td>
</tr>
<tr>
<td>5.7</td>
<td>Gärrestaufbereitung ...</td>
<td>33</td>
</tr>
<tr>
<td>5.8</td>
<td>Gärrestlagerung ...</td>
<td>35</td>
</tr>
<tr>
<td>5.9</td>
<td>Gärrestabtransport ..</td>
<td>38</td>
</tr>
<tr>
<td>6</td>
<td>Softwareumsetzung des Leitfadens in einer Checkliste ...</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Literaturverzeichnis ..</td>
<td>40</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

Abbildung 1: Normenhierarchie ... 8
Abbildung 2: Verfahrensfluss mit möglichen Emissionsquellen ... 14
Abbildung 3: Darstellung Substratanlieferung im Verfahrensfluss und mögliche Emissionen 15
Abbildung 4: Darstellung Substratlagerung im Verfahrensfluss und mögliche Emissionen 17
Abbildung 5: Darstellung Substrataufbereitung im Verfahrensfluss und mögliche Emissionen 19
Abbildung 6: Darstellung Substrateinbringung im Verfahrensfluss und mögliche Emissionen 21
Abbildung 7: Darstellung der Fermentation im Verfahrensfluss und mögliche Emissionen bei den gasführenden Systemen sowie bei zusätzlichen Gasverbrauchseinrichtungen (zGve) ... 23
Abbildung 8: Orientierungshilfe zur Bewertung von Leckagen (Clemens, Kohne, Neitzel, & Schreier, 2014) 25
Abbildung 9: Auszug aus der Handlungsempfehlungen nach der Orientierungshilfe zur Bewertung von Leckagen (Clemens, Kohne, Neitzel, & Schreier, 2014) .. 25
Abbildung 10: Darstellung Biogasverwertung im Verfahrensfluss und mögliche Emissionen 29
Abbildung 11: Darstellung Gärrestaufbereitung im Verfahrensfluss und mögliche Emissionen 33
Abbildung 12: Darstellung Gärrestlagerung im Verfahrensfließbild und mögliche Emissionen 35
Abbildung 13: Vorgehensweise bei der Überprüfung des genehmigungskonformen Betriebes von Gärrestlagern .. 37
Abbildung 14: Darstellung Gärrestabtransport im Verfahrensfluss und mögliche Emissionen 38
Tabellenverzeichnis

Tabelle 1: Darstellung der Ordnungsnummern aus der 4. BImSchV nach welchen eine Biogasanlage oder deren Teile genehmigt werden können	9
Tabelle 2: aktuelle Grenzwerte nach der TA Luft für die Biogas - BHKW	30
Tabelle 3: aktuelle allgemeine Emissionsgrenzwerte nach der TA Luft (anwendbar auf Biogasaufbereitungsanlagen aber auch auf Biogaskessel und Gasturbinen)	32
Abkürzungsverzeichnis

ANB Abgasnachbehandlung
AP Arbeitspaket
BetEmBGA Betriebsbedingte Emissionen an Biogasanlagen
BGA Biogasanlage
BGAA Biogasaufbereitungsanlage
BHKW Blockheizkraftwerk
BlmSchG Bundesimmissionsschutzgesetz
BlmSchV Bundesimmissionsschutzverordnung
BVT Beste Verfügbare Technik
DBFZ Deutsches Biomasseforschungszentrum
DIN Deutsche Industrie Norm
DWA Druckwasseradsorption
DWW Druckwasserwäsche
FKZ Förderkenzeichen
FNR Fachagentur für Nachwachsende Rohstoffe
FWL Feuerungswärmeleistung
GIRL Geruchsimmisionsrichtlinie
HTK Hühnertrockenkot
KAS Kommission für Anlagensicherheit
KNV katalytische Nachverbrennung
KrWG Kreislaufwirtschaftsgesetz
KTBL Kuratorium für Technik und Bauwesen in der Landwirtschaft
LAI Bund/Länder-Arbeitsgemeinschaft Immissionsschutz
LDS Landesdirektion Sachsen
LIfULG Landesamt für Umwelt, Landwirtschaft und Geologie
MW MW Megawatt
NaWaRo Nachwachsende Rohstoffe
QmAB Qualitätssicherung Methanemissionsmessung an Biogasanlagen
RNV regenerative Nachverbrennung
SMUL Staatsministerium für Umwelt und Landwirtschaft
TA Lärm Technische Anleitung zum Schutz gegen Lärm
TA Luft Technische Anleitung der Reinhaltung der Luft
THG Treibhausgas
TNV thermische Nachverbrennung
ÜUDS Über- und Unterdrucksicherung
VDI Verein Deutscher Ingenieure
zGve zusätzliche Gasverbrauchseinrichtung
1 Einleitung

Die Nachhaltigkeit der Energiebereitstellung aus nachwachsenden Rohstoffen (NaWaRo) ist sowohl für Klima und Umwelt als auch für die breite öffentliche Akzeptanz der Bioenergie von zentraler Bedeutung. Die quantitative Ermittlung der Emissionen aus Biogasanlagen, die sich daraus ergebenden Minderungsmaßnahmen und die Überwachung dieser Maßnahmen, leisten dazu einen aktiven Beitrag.

Um die fachliche Grundlage dafür zu verbessern wurde das von der Fachagentur für nachwachsende Rohstoffe (FNR) geförderte Verbundvorhaben „Betriebsbedingte Emissionen an Biogasanlagen (BetEmBGA - FKZ: 22020313)" initiiert. Am Projekt beteiligten sich unter Leitung des Deutschen Biomasseforschungszentrums (DBFZ) außerdem das Kuratorium für Technik und Bauwesen in der Landwirtschaft (KTBL) und das sächsische Landesamt für Umwelt, Landwirtschaft und Geologie (LfULG).

Das Gesamtvorhaben gliedert sich dabei in 3 Teile:

1. Beschreiben betriebsabhängiger Emissionsquellen auf Biogasanlagen hinsichtlich ihres Verhaltens, der Emissionsstärke und der verursachenden Betriebszustände insbesondere (Methan-)Emissionen aus Überdrucksicherungen und aus der nicht gasdichten bzw. offenen Gärrestlagerung (DBFZ)
2. Ableiten von Managementempfehlungen für einen emissionsarmen Betrieb von Biogasanlagen aus den anlagenindividuellen Ergebnissen und Erarbeitung eines KTBL-Heftes zur praktischen Umsetzung der Ergebnisse durch die Betreiber
3. Erarbeitung eines Leitfadens als Empfehlungen zur Überwachung für die zuständigen Behörden (LfULG - FKZ: 22015114)

2 Inhalt und Zweck des Leitfadens

Der Leitfaden ist an die Mitarbeiter der Überwachungsbehörden gerichtet und soll diese bei der Überwachung des Emissionszustandes von genehmigungspflichtigen Biogasanlagen nach dem Bundes-Immissionsschutzgesetz (BImSchG) unterstützen.

Der Leitfaden soll eine Angleichung des Überwachungsstandards insbesondere im Hinblick auf die luftgetragenen Emissionen erreichen. Im Leitfaden werden entlang der Substrat- und der anschließenden Gasverwertung, die möglichen Emissionsquellen, der Stand der Technik, die Überwachungsinhalte, mögliche Ursachen der Emissionen und ein Katalog mit Emissionsminderungsmaßnahmen angeboten. Die Inhalte resultieren neben Ergebnissen des Projektes „BetEmBGA“, aus den immissionsschutzrechtlichen Anforderungen an Biogasanlagen und Recherchen zu anderen aktuellen bzw. abgeschlossenen Forschungsprojekten.

Aufgrund der Vielzahl und der Verschiedenheit der Anlagenarten die durch die Mitarbeiter der Überwachungsbehörde kontrolliert werden müssen, soll der Leitfaden eine Hilfestellung im täglichen Arbeitsalltag bieten. Daraus folgend und um die Benutzerfreundlichkeit zu verbessern, wurde auf die Übersichtlichkeit und die Kompaktheit des Leitfadens besonders Wert gelegt. Insbesondere kann der Leitfaden eine Hilfestellung zur Einarbeitung von neuen Mitarbeitern sowie bei Vertretungen durch Kollegen sein und auch bei der Erarbeitung von Anlagengenehmigungen nach BlmSchG als Grundlage genutzt werden.
3 Anwendungsbereich

3.1 Allgemein

Die Anwendung dieses Leitfadens ist für die Überwachung des Emissionszustands von Biogasanlagen, die im Rahmen von § 52 BImSchG genehmigt wurden, vorgesehen. Unabhängig davon kann der Leitfaden aber auch bei nach BImSchG nicht genehmigungsbedürftigen Anlagen (§22 BImSchG) angewendet werden, da diese sich hinsichtlich der Emissionen nicht von den genehmigungsbedürftigen Anlagen nach BImSchG unterscheiden.

Der Leitfaden stellt einen Katalog der Ursachen und der möglichen Emissionsminderungsmaßnahmen dar. Die Beurteilung der Verhältnismäßigkeit in den einzelnen speziellen Fällen obliegt den Mitarbeitern der Überwachungsbehörde sowohl nicht schon Vorgaben in bestimmten Verwaltungsvorschriften und Richtlinien (bspw. TA – Luft und VDI 3475 Blatt 4) vorhanden sind. Die Kriterien zur Bestimmung zum Stand der Technik befinden sich in der Anlage zu § 3 Abs. 6 des BImSchG.

Zur Orientierung wird immer noch zusätzlich angegeben was als den Stand der Technik anzusehen ist.

Dieser Leitfaden wird in der Praxis nicht auf jede Frage eine Antwort bieten, soll aber eine Orientierungshilfe sein.

3.2 rechtlicher Rahmen

3.2.1 Normenhierarchie

Abbildung 1: Normenhierarchie

In den folgenden Kapiteln sind die für die Biogasanlagen relevantesten Gesetze, Verordnungen, Verwaltungsvorschriften, Erlasse und Regelwerke für Deutschland kurz beschrieben. Auf die Industrieemissions-Richtlinie (IED) als wichtigste europäische Richtlinie wird hingewiesen. Sie wird aber in den nachfolgenden Abschnitten nicht mit dargestellt.
3.2.2 Bundesgesetze und Bundesrechtsverordnungen

Bundes-Immissionsschutzgesetz (BlmSchG)

4. Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (4. BlmSchV)

Die Genehmigungsbedürftigkeit der Biogasanlagen nach dem BlmSchG hängt von deren Zuordnung zu den Ziffern der 4. BlmSchV ab (Anlagenart, bestimmte verfahrenstechnische Parameter, Art der Substrate und deren Einstufung der verwendeten Stoffe nach dem Kreislaufwirtschaftsgesetz (KrWG), …).

In der folgenden Tabelle sind verschiedene Möglichkeiten aufgelistet nach denen eine Biogasanlage oder Teile davon genehmigt werden können. Im Anschluss an die Tabelle sind einzelne Ziffern noch näher erläutert.

Tabelle 1: Darstellung der Ordnungsnummern aus der 4. BlmSchV nach welchen eine Biogasanlage oder deren Teile genehmigt werden können

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Anlagenbeschreibung</th>
<th>Verfahrensart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Wärmeerzeugung, Bergbau und Energie</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Anlagen zur Erzeugung von Strom, Dampf, Warmwasser, Prozesswärme und erhitztem Abgas in einer Verbrennungsanlage (wie Kraftwerk, Heizkraftwerk, Heizwerk, Gasturbinenanlage, Verbrennungsmotoranlage, sonstige Feuerungsanlagen), einschließlich zugehöriger Dampfkessel, ausgenommen Verbrennungsmotoranlagen für Bohranlagen und Notstromaggregate, durch den Einsatz von gasförmigen Brennstoffen (insbesondere Koksofengas, Grubengas, Stahlgas, Raffineriegas, Synthesegas, Erdölgas aus der Tertiärförderung von Erdöl, Klärgas, Biogas), ausgenommen naturbelassenem Erdgas, Flüssiggas, Gasen der öffentlichen Gasversorgung oder Wasserstoff, mit einer Feuerungswärmeleistung von 1 Megawatt bis weniger als 10 Megawatt, bei Verbrennungsmotoranlagen oder Gasturbinenanlagen</td>
<td>V</td>
</tr>
<tr>
<td>1.15</td>
<td>Anlagen zur Erzeugung von Biogas, soweit nicht von Nummer 8.6 erfasst, mit einer Produktionskapazität von 1,2 Million Normkubikmetern je Jahr Rohgas oder mehr</td>
<td>V</td>
</tr>
<tr>
<td>1.16</td>
<td>Anlagen zur Aufbereitung von Biogas mit einer Verarbeitungskapazität von 1,2 Million Normkubikmetern je Jahr Rohgas oder mehr</td>
<td>V</td>
</tr>
<tr>
<td>7.</td>
<td>Nahrungs-, Genuss- und Futtermittel, landwirtschaftliche Erzeugnisse</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Anlagen zum Halten oder zur Aufzucht von</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Verwertung und Beseitigung von Abfällen und sonstigen Stoffen</td>
<td></td>
</tr>
<tr>
<td>8.6</td>
<td>Anlagen zur biologischen Behandlung, soweit nicht durch Nummer 8.5 oder 8.7 erfasst, von nicht gefährlichen Abfällen, soweit nicht durch Nummer 8.6.3 erfasst, mit einer Durchsatzkapazität an Einsatzstoffen von</td>
<td></td>
</tr>
<tr>
<td>8.6.2</td>
<td>nicht gefährlichen Abfällen, soweit nicht durch Nummer 8.6.3 erfasst, mit einer Durchsatzkapazität an Einsatzstoffen von</td>
<td></td>
</tr>
<tr>
<td>8.6.2.1</td>
<td>50 Tonnen oder mehr je Tag,</td>
<td>G,E</td>
</tr>
<tr>
<td>8.6.2.2</td>
<td>10 Tonnen bis weniger als 50 Tonnen je Tag,</td>
<td>V</td>
</tr>
<tr>
<td>8.6.3</td>
<td>Gülle, soweit die Behandlung ausschließlich zur Verwertung durch anaerobe Vergärung (Biogaserzeugung) erfolgt, mit einer Durchsatzkapazität von</td>
<td></td>
</tr>
</tbody>
</table>
8.6.3.1 100 Tonnen oder mehr je Tag, G,E
8.6.3.2 weniger als 100 Tonnen je Tag, soweit die Produktionskapazität von Rohgas 1,2 Mio. Normkubikmetern je Jahr oder mehr beträgt; V

8.10 Anlagen zur physikalisch-chemischen Behandlung, insbesondere zum Destillieren, Trocknen oder Verdampfen, mit einer Durchsatzkapazität an Einsatzstoffen bei

8.10.2 nicht gefährlichen Abfällen von
8.10.2.1 50 Tonnen je Tag oder mehr, G,E
8.10.2.2 10 Tonnen bis weniger als 50 Tonnen je Tag; V

8.11 Anlagen zur

8.11.2 sonstigen Behandlung, ausgenommen Anlagen, die durch die Nummern 8.1 bis 8.10 erfasst werden, mit einer Durchsatzkapazität von

8.11.2.4 nicht gefährlichen Abfällen, soweit nicht durch die Nummer 8.11.2.3 erfasst, von 10 Tonnen oder mehr je Tag; V

8.13 Anlagen zur zeitweiligen Lagerung von nicht gefährlichen Abfällen, soweit es sich um Gülle oder Gärreste handelt, mit einer Lagerkapazität von 6 500 Kubikmetern oder mehr; V

9. Lagerung, Be- und Entladen von Stoffen und Gemischen

9.1 Anlagen, die der Lagerung von Stoffen oder Gemischen bei einer Temperatur von 293,15 Kelvin und einem Standarddruck von 101,3 Kilopascal vollständig gasförmig vorliegen und dabei einen Explosionsbereich in Luft haben (entzündbare Gase), in Behältern oder von Erzeugnissen, die diese Stoffe oder Gemische z. B. als Treibmittel oder Brenngas enthalten dienen, ausgenommen Erdgasrohrenspeicher und Anlagen, die von Nummer 9.3 erfasst werden,

9.1.1 soweit es sich nicht ausschließlich um Einzelbehältnisse mit einem Volumen von jeweils nicht mehr als 1 000 Kubikzentimeter handelt, mit einem Fassungsvermögen von

9.1.1.1 30 Tonnen oder mehr, G
9.1.1.2 3 Tonnen bis weniger als 30 Tonnen, V

9.36 Anlagen zur Lagerung von Gülle oder Gärresten mit einer Lagerkapazität von 6 500 Kubikmetern oder mehr; V

zu 1.2.2.2: Das BHKW oder die Gasturbine müssen als Gasverwertungseinrichtungen ab einer Feuerungswärmeleistung von 1 MW nach dem BImSchG genehmigt werden. Bei mehreren Aggregaten die einzeln die Genehmigungsgrenze unterschreiten aber betrieblich zusammengehören ist die Gesamtleistung zur Prüfung der Genehmigungsbedürftigkeit ausschlaggebend. Der Genehmigungstatbestand darf nicht auf die Biogasanlage ausgedehnt werden, denn diese ist keine Nebenanlage des BHKWs.

zu 1.15: Durch diese Ordnungsnummer werden nur Anlagen mit der Verwendung von ausschließlich NaWaRo als Substrat genehmigungspflichtig.

zu 7.1: Biogasanlagen können als Nebenanlagen von Tierhaltungsanlagen genehmigungsbedürftig sein.

zu 8.10.2/8.11.2.4: Die Gärrestaufbereitung könnte nach der vorliegenden Ordnungsnummer genehmigungspflichtig sein.

3.2.3 Allgemeine Verwaltungsvorschriften und Erlasse

TA Luft

TA Lär
Die Technische Anleitung zum Schutz gegen Lärm (TA Lär) ist eine Verwaltungsvorschrift im Sinne des BImSchG. Sie dient dem Schutz der Allgemeinheit und der Nachbarschaft vor schädlichen Umwelteinwirkungen durch Geräusche sowie der Vorsorge gegen schädliche Umwelteinwirkungen durch Geräusche.

GIRL
Die Geruchsimmissions-Richtlinie dient der Beurteilung von Geruchsemissionen. Sie ist in verschiedenen Bundesländern, z.B. in Sachsen als Verwaltungsvorschrift für die Behörden bindend.

Erlasse
Erlasse der obersten Bundes- oder Staatsbehörden wie z.B. des Länderministerien sind für die nachgeordneten Behörden bindend.

3.2.4 Technische Regelwerke

VDI Richtlinie 3475 Blatt 4
Im Bereich der landwirtschaftlichen Biogasanlagen wird in der Regel die VDI Richtlinie 3475 Blatt 4 zur Beschreibung des Standes der Technik anerkannt bzw. teilweise auf dem Erlasswege in einigen Bundesländern durch die Ministerien als Stand der Technik festgelegt.
Speziell in Sachsen wurde z. B. die Umsetzung des Punktes 4.3 „Maßnahmen zur Emissionsminderung“ aus der VDI Richtlinie 3475 Blatt 4 als Erlass durch das Staatsministerium für Umwelt und Landwirtschaft (SMUL) festgelegt.

Die Anwendung auf Biogasanlagen, die keiner Genehmigung nach dem BImSchG bedürfen, findet in der Regel nur bei Beschwerdefällen oder bei der Zusammenarbeit mit der Baubehörde, als die Genehmigungsbehörde, statt. Die Verhältnismäßigkeit der Maßnahmen muss in Einzelfällen überprüft werden.

VDI Richtlinie 3896

Hinweis:

Auch die Anforderungen der TA Luft haben für den Betreiber einer Biogasanlage keinen unmittelbaren bindenden Charakter, da es sich um kein Gesetz und keine Verordnung handelt, sondern sie müssen durch die Behörde angeordnet werden.

3.3 Technik

3.4 Emissionen

Der Leitfaden konzentriert sich grundsätzlich auf die Emissionen nach der Begriffsdefinition im Bundesimmissionschutzgesetz.

„Emissionen im Sinne dieses Gesetzes sind die von einer Anlage ausgehenden Luftverunreinigungen, Geräusche, Erschütterungen Licht, Wärme, Strahlen und ähnliche Umwelteinwirkungen.“ (§ 3 Abs. 3 BImSchG)

Bei der Erzeugung und Verwertung von Biogas entstehen in erster Linie Luftverunreinigungen.

„Luftverunreinigungen im Sinne dieses Gesetzes sind Veränderungen der natürlichen Zusammensetzung der Luft, insbesondere durch Rauch, Ruß, Staub, Gase, Aerosole, Dämpfe und Geruchsstoffe.“ (§ 3 Abs. 4 BImSchG)

Von globaler Bedeutung sind neben klimarelevanten Treibhausgasen wie Kohlendioxid, Methan und Lachgas auch Luftverunreinigungen, die lokale und regionale Auswirkungen haben können, z. B. Ammoniak, Stickoxide, Schwefelwasserstoff, Formaldehyd, Geruchsimmersionen oder auch Staub sein. Bezüglich weiterer Emissionen ist vor allem Lärm relevant.
4 Allgemeine Vorgehensweise

Bei der Überwachung können je nach Anlass folgende Ausführungsformen unterschieden werden:

Inbetriebnahmeüberwachung

- Regelüberwachung
- Überwachungen aus besonderem Anlass (z.B. vorliegende Beschwerden oder Havarien)
- nicht angekündigte Überwachung bei Branchenaktionen.

Dieser Leitfaden fokussiert sich auf die Regelüberwachung.

In der Regel muss die Einhaltung der Emissionsgrenzwerte nach der TA Luft überwacht werden. Teilweise wurden jedoch Grenzwerte auch durch den Antragsteller vorgeschlagen, welche die Grenzwerte der TA Luft unterschreiten und bezugnehmend auf die Antragsunterlagen als verbindliche Grenzwerte in den Genehmigungsbescheid aufgenommen wurden. Ist dies der Fall, so sind diese Grenzwerte maßgebend. Möglich ist auch das seit der letzten Überwachung Vollzugsempfehlungen mit verschärften Grenzwerten z.B. durch den LAI erarbeitet und deren Umsetzung durch die zuständigen Länderministerien per Erlass geregelt wurden. Im Rahmen der Überwachung ist dann zu prüfen ob diese verschärften Grenzwerte durch die Anlage eingehalten werden oder zusätzlich eine Anordnung z.B. nach § 17 BImSchG erforderlich ist.

Empfehlenswert ist bei der Überwachung die substratorientierte Vorgehensweise von der Substratanlieferung bis zum Gärrestabtransport.
5 Mögliche Emissionsquellen und deren Überwachung

Einen Gesamtüberblick zum Verfahrensfluss erhalten Sie in der nachfolgenden Abbildung 2. Dort sehen Sie neben den einzelnen Verfahrensschritten auch mögliche Emissionsquellen ohne Anspruch auf Vollständigkeit.

Im nachfolgenden Kapitel werden die Positionen des jeweiligen Verfahrensschrittes im Verfahrensfluss mit den zu erwartenden Emissionen am Anfang graphisch dargestellt und kurz erläutert, was unter dem jeweiligen Verfahrensschritt zu verstehen ist. Es werden dabei keine quantitativen Aussagen zu den Emissionen gemacht.

Im Anschluss werden die erforderlichen Überwachungsmaßnahmen, mögliche Ursachen für Emissionen sowie Minderungsmaßnahmen, der Stand der Technik und die Regelwerke für die technischen und organisatorischen Anforderungen, dargestellt. Auch hier wird noch mal darauf verwiesen, dass auf Grund der Komplexität der Überwachung nicht alle Überwachungsmaße, Ursachen und Minderungsmaßnahmen dargestellt werden können.

Die Maßnahmen zur Überwachung werden dabei immer besonders hervorgehoben um für den Nutzer eine gute Handhabbarkeit zu garantieren.

Abbildung 2: Verfahrensfluss mit möglichen Emissionsquellen
5.1 Substratanlieferung

Mögliche Ursachen für Emissionen:

- Überschreitung der genehmigten Anliefervorgänge
- offene Transportbehälter
- unbefestigte Fahrwege
- verdreckte Fahrwege
- hohe Frequenz des Anlieferverkehrs
- ungünstige Straßenführung
- geringer Abstand zu möglichen Beschwerdeführern
- Anlieferung außerhalb der Anlieferzeiten (z.B. Nachtstunden)

Abbildung 3: Darstellung Substratanlieferung im Verfahrensfluss und mögliche Emissionen

Überwachung

- Vergleich der vorliegenden Anliefervorgänge und Anlieferzeiten mit den genehmigten Dokument (vorausgesetzt: Dokumentation ist vorhanden)
- Überprüfung der Fahrwege auf Befestigung und Sauberkeit im Betriebsbereich
- Überprüfung ob bei staubenden Bedingungen die Befeuchtung von Fahrwegen realisiert wird
- bei Möglichkeit, Überprüfung ob die Anlieferung der geruchsintensiven und/oder staubenden Substraten in geschlossenen Behältern erfolgt
 - bspw. spezielle Gülletransportwagen bei Gülleanlieferung; Containerfahrzeuge; Nutzung von Abdeckplanen oder geschlossenen Gebinden
 - geruchsintensive und staubende Substrate können bspw. sein:
 - Getreidespelzen, trockener Hühnerkot, Stroh, Knochenmehl, Milchpulver, Gülle usw.
Maßnahmen der Emissionsminderung:

- Anlieferung in geschlossenen oder abgedeckten Behältnissen
- Befestigung der Fahrwege im Betriebsbereich
- Sauberkeit der Fahrwege gewährleisten
- u.U. Befeuchtung der Fahrwege bei staubenden Bedingungen
- Reduzierung der Anliefervorgänge
- Begrenzung der maximalen oder der durchschnittlichen Anliefervorgänge
- Anlieferung zu bestimmten Zeiten (bspw. 6 – 22 Uhr)
- alternative Anfahrroute
- Reduzierung der Anliefervorgänge
- Begrenzung der maximalen oder der durchschnittlichen Anliefervorgänge

Stand der Technik:

- Anlieferung von geruchsintensiven und staubenden Substraten in geschlossenen Behältern
- Befestigung von Fahrwegen und Gewährleistung der Sauberkeit im Betriebsbereich

technische und organisatorische Anforderungen:

- TA Luft Nr. 5.2.3.3
- VDI 3475 Blatt 4 Nr. 4.3.1
- TA Lärm
5.2 Substratlagerung

Abbildung 4: Darstellung Substratlagerung im Verfahrensfluss und mögliche Emissionen

Die Substratlagerung umfasst die Lagerung in Silos (Horizontalsilos/Hochsilos/Siloschlächten, Lagerhallen sowie die Lagerung in Behältern (Güllelägern) und Dungplatten, einschließlich Befüllung und Entnahme.

Überwachung

- Überprüfung der bis an Fahrsilolrand und die Anschnittfläche gehende Abdeckung mit Beschwerung
- Überprüfung der sauberen vertikalen Anschnittfläche
- Überprüfung der kompletten Abdeckung (Folien) und Beschwerung von nicht genutzten Substraten in den Fahrsilos
- Optische Kontrolle der Flächen auf Sauberkeit
- Abdeckung von geruchsintensiven und staubenden Substraten
- bei Güllelagerung nach Ordnungsnummer 9.36 (vgl. Tabelle 1), optische Kontrolle der natürlichen Schwimmschicht oder der künstlichen Abdeckung
- bei Festmistlagerung sollte dieser kompakt auf einer umwandten Dungplatte gelagert werden

Mögliche Ursachen für Emissionen:

- Spontanvergärung von Gülle
- nicht fachgerecht ausgeführte Silageverarbeitung sowie Verunreinigungen durch Silagereste oder Austreten des Silagesickerwassers
- nicht ordnungsgemäße Lagerung von Festmist (keine kompakte Lagerung bzw. über den Rand der Dungplatte hinaus

Maßnahmen der Emmissionsminderung:

- Frische Substrate aus der Landwirtschaft sind sofort zu verarbeiten oder zu konservieren (Trocknen oder Silieren)
- fachgerechte Silierung
- schnellstmögliche, emissionsarme und gezielte Zuführung von Gülle über Rohrleitung zum Pufferbehälter und dem Vergärungsprozess
- staubende und geruchsintensive Substrate möglichst in geschlossenen Räumen oder abgedeckten Lagerboxen oder umgehende Einbringung in die Vorgrube oder den Fermenter
Abgaserfassung und Reinigung der Abgase, z.B. in einem Biofilter oder einer anderen geeigneten Abgasreinigungsanlage, soweit die Lagerung in geschlossenen Hallen stattfindet.

Abdeckung von Silagen mit Folien
keine Eingrünung von Silagen!
Reinigen von befestigten Siloplatten und Rangierflächen nach jeder Entnahme
Vermeidung von Überfüllungen
möglichst kleine und der Entnahme angepasste Anschnittfläche
Erfassung von Silagesickersäften/-wasser in geschlossenen Auffangbehältern und Zufuhr zum Fermentationsprozess
möglichst eine geruchsmindernde oder gasdichte Abdeckung von Güllelagern
bei nicht gasdichten Abdeckungen, eine Abluftnachbehandlung
Unterspiegelbefüllung von Güllelagern
Kompakte Lagerung von Festmist auf einer umwandeten Dungplatte

Stand der Technik:

Silierung
Abdeckung der Silage zur Verringerung der anfallenden Sickersäfte und Trockenmasseverluste mit Folie (keine Eingrünung, da Substanzverlust!)
Abdeckung von staubenden oder geruchsintensiven Substraten
u.U. Lagerung von staubenden und geruchsintensiven Substraten in Lagerhallen
Fassung der Sickersäfte/-wasser in Sammelbehältern oder eine gezielte Zufuhr in den Fermenter
geruchsmindernde Abdeckung von Güllelagern
Kompakte Lagerung von Festmist auf einer umwandeten Dungplatte

technische und organisatorische Anforderungen:

TA Luft Nr. 5.2.3.5; 5.2.8
VDI 3475 Blatt 4 Nr. 4.3.1
5.3 Substrataufbereitung

Die Substrataufbereitung umfasst die Silierung, die mechanische Aufbereitung, die Hydrolyse und die Hygienisierung. Dabei gibt es speziell bei der Silierung Überschneidungen mit der Substratlagerung, da die Silierung in der Regel bereits bei der Lagerung mit stattfindet. Deshalb wird hier nicht noch mal darauf eingegangen. Üblich ist auch das Anmaischen und Homogenisieren, es kann in der Hydrolyse oder auch in der später noch zu behandelnden Vorgrube stattfinden.

Abbildung 5: Darstellung Substrataufbereitung im Verfahrensfluss und mögliche Emissionen

Mögliche Ursachen für Emissionen:

Hydrolyse:
- offener/nicht gasdichter Hydrolysebehälter
- nicht sachgerechter Betrieb der Emissionsminderungseinrichtungen
- Zu hohe pH-Werte und/oder zu lange Verweilzeiten im Hydrolysebehälter (z.B. aufgrund zu hoher Rezirkulationsmengen)

sonstige Substrataufbereitungsverfahren:
- offene Einwurfschächte

Maßnahmen der Emissionsminderung:

Hydrolyse:
- Einbindung der entstehenden Gase ins Gasverwertungssystem
- oder Verbrennung in der zusätzlichen Gasverbrauchseinrichtung
- sachgerechter Betrieb der Emissionsminderungseinrichtungen (z.B. ausreichende Befeuchtung des Biofilters) (für Geruchsminderung)

sonstige Substrataufbereitungsverfahren:
- Abdeckung der Einbringungsöffnungen

Überwachung

- Überprüfung der Abdeckungen bei Aufbereitung von geruchsintensiven und staubenden Substraten
- schnellstmögliche Trocknung oder Silierung der Substrate
- Überprüfung der Dauer und der Temperatur der Hygienisierung
- Überprüfung von Emissionsminderungseinrichtungen (z.B. Biofilter) wenn vorhanden
Stand der Technik:

- gasdichte Abdeckung der Hydrolysebehälter mit Vermischung des Hydrolysegases im Gasspeicher des Fermenters oder Einpressung ins Gärgemisch und Anschluss an die Gasverwertung
- oder Aufbereitung mittels Biofilter zur Geruchsminderung, saurer Wäscher und Wasserstoff- und evtl. Methanverwertung (Fackel, katalytische Oxidation)
- geschlossene Ausführung der Aggregate zur Aufbereitung von geruchsintensiven oder staubenden Substrat

Technische und organisatorische Anforderungen:

- VDI 3475 Blatt 4 Nr. 4.3.1
5.4 Substrateinbringung

Anmerkungen:
Die Vorgrube wird als Einbringungssystem und nicht als Substratlager angesehen

Mögliche Ursachen für Emissionen:
- Offene Einbringungsoffnungen oder Homogensierung und Anmaischen bei geschlossener Abdeckung
- Verwendung von Rezirkulat zum Anmaischen
- Biogasaustritt durch Eintragsöffnung in den Fermenter (z. B. bei niedrigem Füllstand im Fermenter)

Maßnahmen der Emissionsminderung:
- Abdeckung von Einbringungsoffnungen
- keine Verwendung von Rezirkulat oder Verwendung einer Abdeckung
- keine Lagerung von Gülle in der Vorgrube/kürzere Verweilzeit
- Abdeckungssysteme bei geruchintensiven Substraten
Ständiges Vorhalten von Substrat im Einbringungssystem zur „Verstopfung“ der Eingangsöffnung im Fermenter

Eintrag von geruchsintensiven Substraten an erster Stelle, danach Überschüttung mir weniger geruchsintensiven Substraten (Bspw. HTK, Maissilage)

Stand der Technik:

- Abdeckung von Vorgruben
- Abdeckung von Einbringungsoffnungen

Technische und organisatorische Anforderungen:

- VDI 3475 Blatt 4 Nr. 4.3.2
5.5 Fermentation

Abbildung 7: Darstellung der Fermentation im Verfahrensfluss und mögliche Emissionen bei den gasführenden Systemen sowie bei zusätzlichen Gasverbrauchseinrichtungen (zGve)

Die Fermentation umfasst nicht nur den Fermenter (Nass- oder Trockenfermentation einschließlich Feststofffermentation im Garagenverfahren) mit seinen Sicherheitsanlagen sondern auch die weiteren Behälter sofern sie über ein Gaslager mit entsprechenden Sicherheitseinrichtungen verfügen. Ebenso werden auch der Kondensatschacht sowie die zusätzlichen Gasverbrauchseinrichtungen (zGve) hier mit betrachtet.

5.5.1 Gasaustritte an gasführenden Teilen und Behältern mit Gasinhalt

Überwachung

- Überprüfung der zugesandten Berichte
- Überprüfung der Nachweise bezüglich der beseitigten Leckagen, anhand der Rechnungen von Dienstleistern
- bzw. Überprüfung der Beseitigung der Leckagen vor Ort
- Überprüfung ob die Untersuchung der Tragluft auf Methankonzentration durchgeführt wurde
- Nutzung der Bewertungsmatrix zur Bewertung der Leckagen (QMaB)
- Ableiten des Handlungsbedarfes auf der Grundlage der Matrix (QMaB)
- Optische und olfaktorische Überprüfung der exponierten gasführenden Bauteile/Stellen bei Begehung (Klemmschlauch)
- falls vorhanden, Konzentrationsmessung mit einem Handgerät an exponierten Stellen
- Bei Feststofffermentation im Garagenverfahren Substratwechsel nur bei ausreichend ausgegastem Substrat
Mögliche Ursachen für Emissionen:

- Fehlkonstruktionen, fehlerhafte Ausführungen und falsche Dimensionierung der Foliendächer
- Alterungsprozesse z.B. bei den Klemmschlauchverbindungen oder den Folien (z. B. Erhöhung der Folien-Richtung)
- Mechanische Einflüsse (z. B. Sturm) auf die Foliendächer (Entstehung von Leckagen)
- fehlende Schmierung der Übergänge aus dem gasführenden System an die Umgebung

- Rührwerksschläuche, Seilzüge etc.
- Korrosion infolge von korrosivem Gas
- Leckagerate von Betriebszustand (Füllstand Gasspeicher, Folienalter) und Umgebungsbedingungen (Umgang- bzw. Biogastemperatur) abhängig
- Futtermittelzufuhr, Rührwerke, Gärrestaustausch

Maßnahmen der Emissionsminderung:

Kombination von:

- Eigenüberwachung durch Betreiber:
 - regelmäßige (tägliche/wochentliche/monatliche) Kontrollen nach Leckagen
 - optische und olfaktorische Kontrolle der exponierten Stellen
 - falls vorhanden mit einem Handmessgerät zur Konzentrationsbestimmung von Methan
 - und jährliche Durchführung von Dichtigkeitsprüfungen (Leckageortungen) (Kombination von mehreren Verfahren)
- Visualisierung der Leckagen mittels Gaskamera (Positionsermittlung)
- Konzentrationsmessung der ermittelten Leckagen
- bei Bedarf Volumenstromabschätzung oder Messung daraus folgende Behebung der Leckagen
- Nachschmieren der Seilzugdurchführungen
- Drucküberwachung für Klemmschlauchverbindingen verbunden mit Alarmierung bei Druckabfall und Entfeuchtung sowie Frostsicherheit der Druckluft
- Redundanz für die Druckluftversorgung der Klemmschläuche und Einbindung der Druckluftversorgung in das Notstromkonzept

Stand der Technik:

- Nachweis der ausreichenden Statik für Folienabdeckungen
- Drucküberwachung für Klemmschlauchverbindingen verbunden mit Alarmierung bei Druckabfall und Entfeuchtung sowie Frostsicherheit der Druckluft
- Redundanz für die Druckluftversorgung der Klemmschläuche und Einbindung der Druckluftversorgung in das Notstromkonzept
- Leckageortung mit methansensitiven, optischen Verfahren (Gaskamera), kombiniert mit der Messung der Gaskonzentration an aufgefundenen Leckagen mindestens alle 3 Jahre
 - und ggf. Abschätzung oder Messung des Volumenstroms
 - mittels Hauben und Volumenstrommessung (oder ähnliches)
 - oder mittels schaumbildender Mittel (Bläschenbildung – Größe und Anzahl)

technische und organisatorische Anforderungen:

- VDI 3475 Blatt 4 Nr. 4.3.4.3
- Orientierungshilfe zur Bewertung von Leckagen (Clemens, Kohne, Neitzel, & Schreier, 2014)
Abbildung 8: Orientierungshilfe zur Bewertung von Leckagen (Clemens, Kohne, Neitzel, & Schreier, 2014)

Abbildung 9: Auszug aus der Handlungsempfehlungen nach der Orientierungshilfe zur Bewertung von Leckagen (Clemens, Kohne, Neitzel, & Schreier, 2014)

5.5.2 zusätzliche Gasverbrauchseinrichtung

Überwachung

- vorhandene zusätzliche Gasverbrauchseinrichtung - bspw. redundantes BHKW, Heizkessel, Notfackel
- Überprüfung der Betriebsstundenzähler und/oder der dazugehörigen Dokumentation
- Kontrolle, ob die zusätzliche Gasverbrauchseinrichtung auf die maximal anfallende Biogasmenge ausgelegt ist
- Überprüfung der Notstromversorgung
- Kontrolle der Durchführung von jährlichen Funktionsfähigkeits tests und Wartungen

mögliche Ursachen für Emissionen:

siehe Kapitel „Über- und Unterdrucksicherungen“
Maßnahmen der Emissionsminderung:
siehe Kapitel „Über- und Unterdrucksicherungen“ (ÜUDS)

Stand der Technik:

- stationäre zusätzliche Gasverbrauchseinrichtung mit einer automatischen Funktionsaufnahme vor dem An-
 sprechen von Überdrucksicherungen
- Auslegung auf den maximal anfallenden Biogasstrom der gesamten Biogasanlage
- Sicherstellung der Funktion bei Ausfall der Stromversorgung
- automatische Registrierung des Betriebs der zusätzlichen Gasverbrauchseinrichtung
- Ausstattung mit einem eigenen Gasverdichter
- regelmäßige Funktions- und Dichtheitsprüfungen sowie Wartungen

technische und organisatorische Anforderungen:

- VDI 3475 Blatt 4 Nr. 4.3.4
- KAS-28 (Arbeitskreis Biogasanlagen (AK-BGA) der Kommission für Anlagensicherheit, November 2013)

5.5.3 Über- und Unterdrucksicherungen (ÜUDS)

Überwachung

- Überprüfung des Genehmigungsinhaltes sowie der nachträglichen Anordnungen zu festgelegten Nebenbestimmungen bzgl. der ÜUDS
 - bei vorhandenen Einträgen, Vergleich der Forderungen mit der Ausführung an der BGA
- Optische und olfaktorische Überprüfung der ÜUDS (an allen Gärbehältern)
 - Überprüfung des Betriebszustandes
 - bei ÜUDS mit Sperrflüssigkeit den Sperrflüssigkeitsstand überprüfen
 - bei nicht beheizten und im Außenbereich befindlichen ÜUDS den Frostschutzmittelstand überprüfen
- Einträge der Auslöseereignisse im Betriebstagebuch überprüfen
- beim vorhandenem Betriebsstundenzähler, die jährliche Betriebsdauer überprüfen
- falls möglich den Ansprechdruck ablesen/nachfragen
- falls möglich das gestufte Ansprechen überprüfen (1. zusätzliche Gasverbrauchseinrichtung, 2. ÜUDS)
 - Vergleich des Ansprechdruckes der zusätzlichen Gasverbrauchseinrichtung und der ÜUDS

Mögliche Ursachen für Emissionen:

- Ausfall oder Wartungsarbeiten an der primären Gasverwertungseinrichtung
und gleichzeitig nicht funktionstüchtige, falsch konzipierte, falsch eingestellte oder fehlende zusätzliche Gasverbrauchseinrichtung

sowie manuelle zusätzliche Gasverbrauchseinrichtung, die beim Ansprechen der ÜUDS nicht bedient wird

Unwissenheit des hinsichtlich des Ansprechens der ÜUDS

Vermeidung des Notfackelbetriebes, da u.U. Betriebsstundenzähler an der Notfackel installiert ist und festgelegte Grenzwerte (z.B. 300 h/a) aus der Genehmigung nicht überschritten werden dürfen sowie nur eine Dokumentationspflicht im Betriebstagebuch besteht

Vermeidung des Notfackelbetriebes, da es eine optische Belästigung darstellt

Betrieb erst bei vollständigem Ausfall von primärseitiger Gasabnahme

Gasdruckregelung der primären Gasverwertung (BHKW), wenn Gasspeichersysteme ohne Korrelation zwischen Betriebsdruck und Füllstandniveau (z. B. Tragluftgasspeicher) verwendet werden

Betrieb im Bereich der gefüllten Gasspeicher

Zu ungenaue Messmethoden zur Feststellung der Gasspeicherfüllstände im unteren bis mittleren Füllstandbereiches

- Seilzugverfahren
- Hydrostatisches Wasserdruckverfahren (einfache Ausführung)

die Abhängigkeit der Gasdichte von der Temperatur (Wetterabhängigkeit)

Schwankungen des Gasspeichervolumens bis 20 % möglich bei ΔT 30 K

Biogasüberproduktion

defalse Dimensionierung des Ansprechdruckes der ÜUDS und der zusätzlichen Gasverbrauchseinrichtung

defalse Auslegung/Einstellung der Tragluftgebläse (bei Tragluftgasspeichern)

def nicht ausreichender Sperrflüssigkeitstand

def nicht ausreichender Forstschutzmittelstand

Maßnahmen der Emissionsminderung:

c. 50 % anzustrebende Pufferkapazität (also ca. 50 % Füllstand) im Normalbetrieb

Einbindung der Messgröße „Gasspeicherfüllstand“ ins Prozessleitsystem und BHKW-Steuerung (Gasspeicherregelung)

Vorhalten von einer automatisch zündenden zusätzlichen Gasverbrauchseinrichtung

Idealweise füllstandgeregelte zusätzliche Gasverbrauchseinrichtung

Sicherstellung des gestuften Ansprechens (1. zusätzliche Gasverbrauchseinrichtung, 2. ÜUDS)

ausreichende Dimensionierung der primären und der zusätzlichen Gasverbrauchseinrichtung

regelmäßige Überprüfung der Funktionsfähigkeit der zusätzlichen Gasverbrauchseinrichtung

Optimale Auslegung/Einstellung des Tragluftgebläses (bei Tragluftgasspeichern)

Anpassung an Witterungsbedingungen (i.d.R. mit der Druckregelklappe)

bei absehbaren Wartungsarbeiten einen entsprechenden Plan zum Fütterungsmanagement erstellen

Rührwerksstopp bei Störfällen

Reduzierung der Substratzuführung bei Störungen auf ein Mindestmaß

allerdings ist damit keine unmittelbare Reduzierung der Biogasmenge verbunden

zur weiteren Optimierung des Anlagenbetriebes Dokumentation im Betriebstagebuch oder Installation eines Betriebsstundenzählers

Stand der Technik:

- Verwertung des Biogases in der primären oder zusätzlichen Gasverwertungseinrichtung
- gestuftes Ansprechen der Sicherheitseinrichtungen (1. zusätzliche Gasverbrauchseinrichtung, 2. ÜUDS)
- ansprechen der ÜUDS nur bei einem nicht bestimmungsgemäßen Betrieb und nach der Biogasfackel.
- Messeinrichtungen zur Registrierung der Auslöseereignisse
- Abschätzung der ausgetretenen Mengen durch Berechnung möglich
technische und organisatorische Anforderungen:

- VDI 3475 Blatt 4 Nr. 4.3.4.3; 4.3.4.8

5.5.4 Kondensatabscheider

Überwachung

- Gewährleistung der Zugänglichkeit
- leichte/gefahrlose Möglichkeit der Kontrolle ohne der Notwendigkeit des Einstieges in Schächte/Gruben
- Kontrolle des Sperrflüssigkeitsstandes bei Druckvorlagen mit Sperrflüssigkeit
 - mindestens der 5–fache Ansprechdruck der ÜUDS
- Sicherung gegen Frost (Frostschutzmittel, ausreichende Einbautiefe, Beheizung)
- Überprüfung der Eigenkontrolle durch den Betreiber sowie dessen Dokumentation (bestenfalls wöchentlich)
- beim Einsatz von Pumpen Eignung für den Ex-Bereich beachten

mögliche Ursachen für Emissionen:

- nicht ausreichender Sperrflüssigkeitsstand
- Leckage im Schacht oder im Siphon

Maßnahmen der Emissionsminderung:

- wöchentliche Eigenkontrolle durch den Betreiber
- ausreichender Sperrflüssigkeitsstand
- kontinuierliche Füllstandüberwachung

Stand der Technik:

- kontinuierliche Füllstandüberwachung
- leichte/gefahrlose Möglichkeit der Kontrolle ohne Notwendigkeit des Einstieges in Schächte/Gruben

technische und organisatorische Anforderungen:

- VDI 3475 Blatt 4 Nr. 4.3.4.3
- Technische Information 4 Sicherheitsregeln für Biogasanlagen
5.6 Biogasverwertung

5.6.1 BHKW, Gaskessel, Gasturbine

Überwachung

- Überprüfung der jährlichen Berichte der Emissionsmessungen
- Überprüfung der Einhaltung der Wartungsintervalle durch Belege/Rechnungen/Verträge
- Kontrolle des H₂S-Gehaltes vor dem BHKW, Gaskessel, Gasturbine

mögliche Ursachen für Emissionen:
- falsche Motoreinstellung oder häufiger Teillastbetrieb
- keine ausreichende Schwefelreinigung vor dem BHKW
- unzureichende Wartung

Maßnahmen der Emissionsminderung

- tägliche Eigenkontrolle durch den Betreiber
- Einhaltung der durch den Hersteller empfohlenen Wartungsintervalle
- gründliche Entschwefelung auf 0 ppm vor dem Motor
- Motor entsprechend des tatsächlichen Betriebes richtig einstellen

Stand der Technik:

- Ausnutzung der innermotorischen Maßnahmen zur Emissionsreduzierung
- Abgasreinigungseinrichtungen (bspw. Oxidationskatalysator, TNV, RNV oder KNV)
technische und organisatorische Anforderungen:

- TA Luft Nr. 5.4.1.4
- VDI 3475 Blatt 4 Nr. 4.3.4

aktuelle Emissionsgrenzwerte TA Luft Nr. 5.4.1.4:

Tabelle 2: aktuelle Grenzwerte nach der TA Luft für die Biogas - BHKW

<table>
<thead>
<tr>
<th>Emissionen</th>
<th>Emissionsgrenzwerte</th>
<th>Motorcharakterisierung</th>
<th>Gasottomotor</th>
<th>Zündstrahlmotor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kohlenmonoxid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 3 MW FWL</td>
<td>0,65 g/m³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 3 MW FWL</td>
<td>1,0 g/m³</td>
<td>2,0 g/m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stickstoffoxide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 3 MW FWL</td>
<td>0,5 g/m³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 3 MW FWL</td>
<td>0,5 g/m³</td>
<td>1,0 g/m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schwefeloxide</td>
<td></td>
<td></td>
<td></td>
<td>0,31 g/m³</td>
</tr>
<tr>
<td>Organische Stoffe (Formaldehyd)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuanlagen jetzt</td>
<td>30 mg/m³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altanlagen mit Emissionswerten > 40 mg/m³ ab dem 05.02.2018</td>
<td>30 mg/m³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altanlagen mit Emissionswerten ≤ 40 mg/m³ ab dem 05.02.2019</td>
<td>30 mg/m³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuanlagen ab 01.01.2020</td>
<td>20 mg/m³</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hinweis: Veränderung des Formaldehydbonus ab 01.07.2018 (20 mg/m³) lt. Beschluss Bund/Länder-Arbeitsgemeinschaft Immissionsschutz

5.6.2 Biogasaufbereitung (BGAA)

Überwachung

- Überprüfung der Einhaltung der Emissionsgrenzwerte aller drei Jahre nach der TA Luft
- Überprüfung der Einhaltung der Wartungsintervalle durch Belege/Rechnungen/Verträge
- Überprüfung der Abstimmung zwischen BGAA und BGEA

Biogasaufbereitungsarten:
Aminwäsche (chem. Wäsche), Druckwasserwäsche (DWW), Druckwechseladsorption (DWA), Polyglykolwäsche (physik. Wäsche), Membrantrennung

Mögliche Ursachen für Emissionen:

- Ausfall der Aufbereitungsanlage oder der Abgasnachbehandlungsanlage
- Leckagen
Häufiger Ausfall der Biogaseinspeiseanlage (BGEA)

Maßnahmen der Emissionsminderung:

- Für den Ausfall von Einrichtungen zur Emissionsminderung sind Maßnahmen vorzusehen, um die Emissionen unverzüglich so weit wie möglich und unter Beachtung des Grundsatzes der Verhältnismäßigkeit zu vermindern (VDI 3896 - Aufbereitung von Biogas auf Erdgasqualität, 2015)
- Fehlerhafte Aufbereitungsschargen innerhalb der Anlage zurückführen und wieder aufbereiten oder einer zusätzlichen Gasverbrauchseinrichtung zuführen (VDI 3896 - Aufbereitung von Biogas auf Erdgasqualität, 2015)
- wenn dies nicht möglich ist, einer für die Verdichterenddrücke geeigneten zusätzlichen Gasverbrauchseinrichtung zuzuführen (VDI 3896 - Aufbereitung von Biogas auf Erdgasqualität, 2015)
- Optimierung der Prozessführung um das Anspringen der ÜUDS zu vermeiden (VDI 3896 - Aufbereitung von Biogas auf Erdgasqualität, 2015)
- soweit technisch realisierbar und wirtschaftlich vertretbar soll der anfallende Messgasstrom bei der kontinuierlichen Messung der Gasbeschaffenheit wieder zurückgeführt werden (VDI 3896 - Aufbereitung von Biogas auf Erdgasqualität, 2015)
- Rechtzeitige Abstimmung bei Abschaltung der BGEA um die Biogasproduktion wenn möglich zu drosseln

Stand der Technik:

- thermische Nachverbrennung (TNV) oder katalytische Nachverbrennung (KNV)

technische und organisatorische Anforderungen:

- TA Luft Nr. 5.2
- VDI 3475 Blatt 4 Nr. 4.3.4
- VDI 3896
Tabelle 3: aktuelle allgemeine Emissionsgrenzwerte nach der TA Luft (anwendbar auf Biogasaufbereitungsanlagen aber auch auf Biogaskessel und Gasturbinen)

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Grenzwert</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtstaub einschließlich Feinstaub</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massenstrom</td>
<td>0,20</td>
<td>kg/h</td>
</tr>
<tr>
<td>Massenkonzentration</td>
<td>20</td>
<td>mg/m³</td>
</tr>
<tr>
<td>auch bei Einhaltung des Massenstromgrenzwertes max. Massenkonzentration</td>
<td>15</td>
<td>g/m³</td>
</tr>
<tr>
<td>organische Stoffe, angegeben als Gesamtkohlenstoff (i.d.R. Methan)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massenstrom</td>
<td>0,5</td>
<td>kg/h</td>
</tr>
<tr>
<td>Massenkonzentration</td>
<td>50</td>
<td>mg/m³</td>
</tr>
<tr>
<td>u.U. Mercaptane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massenstrom</td>
<td>0,1</td>
<td>kg/h</td>
</tr>
<tr>
<td>Massenkonzentration</td>
<td>20</td>
<td>mg/m³</td>
</tr>
<tr>
<td>Schwefelwasserstoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massenstrom</td>
<td>15</td>
<td>g/h</td>
</tr>
<tr>
<td>Massenkonzentration</td>
<td>3</td>
<td>mg/m³</td>
</tr>
<tr>
<td>Ammoniak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massenstrom</td>
<td>0,15</td>
<td>kg/h</td>
</tr>
<tr>
<td>Massenkonzentration</td>
<td>30</td>
<td>mg/m³</td>
</tr>
<tr>
<td>Schwefeldioxid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massenstrom</td>
<td>1,8</td>
<td>kg/h</td>
</tr>
<tr>
<td>Massenkonzentration</td>
<td>0,35</td>
<td>g/m³</td>
</tr>
<tr>
<td>Formaldehyd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massenstrom</td>
<td>12,5</td>
<td>g/h</td>
</tr>
<tr>
<td>Massenkonzentration</td>
<td>5</td>
<td>mg/m³</td>
</tr>
</tbody>
</table>

zusätzlich bei thermischen und katalytischen Nachverbrennungseinrichtungen

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Grenzwert</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kohlenmonoxid</td>
<td>0,1</td>
<td>g/m³</td>
</tr>
<tr>
<td>Stickstoffoxid und Stickstoffdioxid angegeben als Stickstoffdioxid</td>
<td>0,1</td>
<td>g/m³</td>
</tr>
</tbody>
</table>

Im Einzelfall können Festlegungen getroffen werden, wenn die der Nachverbrennung zugeführten Gase nicht geringe Konzentrationen an Stickstoffoxiden oder sonstigen Stickstoffverbindungen enthalten. Dabei dürfen folgende Grenzwerte nicht überschritten werden:

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Grenzwert</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stickstoffoxid und Stickstoffdioxid angegeben als Stickstoffdioxid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massenstrom</td>
<td>1,8</td>
<td>kg/h</td>
</tr>
<tr>
<td>Massenkonzentration</td>
<td>0,35</td>
<td>g/m³</td>
</tr>
</tbody>
</table>
5.7 Gärrestaufbereitung

Die Gärrestaufbereitung erfolgt am Häufigsten über Separation der Gärreste und/oder Trocknung. Weitere Möglichkeiten sind z.B. die Ultrafiltration, Umkehrosmose, die Eindampfung von flüssigem Gärrest, die Fällung/ Flockung und die aerobe Belebung.

Nachfolgend wird auf die Separation und die Trocknung abgestellt. Insbesondere aber bei komplexen Verfahren empfiehlt es sich die Anforderungen der Hersteller vorab zu prüfen, da die einzelnen Verfahrensschritte sehr unterschiedlich sein können.

Mögliche Ursachen für Emissionen:
- keine Einhausung des Separators
- offene Lagerung des festen Anteils des separierten Gärrestes
- keine Nutzung einer Abluftreinigungsanlage
- exponierte Stelle (Sonneneinstrahlung, windexponiert)
- keine Schwinmschichtbildung bei Lagerung der abgetrennten flüssigen Phase im offenen Gärrestlager erhöhte Ammoniakemissionen

Abbildung 11: Darstellung Gärrestaufbereitung im Verfahrensfluss und mögliche Emissionen

Überwachung

- Separation:
 Separationsprozess
 - Einhausung des Separators
 - Überprüfung der Lagerung des festen Gärrestes
 - kurzzeitige Lagerung der festen Gärreste
 - im Idealfall verdichtet und abgedeckt!
 - Alternative:
 - nur abgedeckt
 - schattiger, windgeschützter Bereich mit schnellstmöglicher Weiterverarbeitung

- Trocknung:
 - Überprüfung der Emissionsmessberichtes mit den Grenzwerten der Abluftreinigungsanlage
 - Staubfilter, Biofilter, saurer Wässcher
Maßnahmen der Emissionsminderung:
- **Separation:**
 - Aufstellung und Lagerung im schattigen und windgeschützten Bereich
 - kurze Lagerdauer, Schwefelzugabe, Zugabe kohlenstoffreicher Materialien (Grünschnitt, Hackschnitzel, Stroh)
 - deutliche Reduzierung der Ammoniakemissionen durch Verdichtung und Abdeckung der separierten festen Gärreste
 - Einhausung mit Abluftbehandlung über saure Wäsche

- **Trocknung:**
 - Abluftbehandlung mit Biofilter und sauren Wäscher

Stand der Technik:
- **Separation:**
 - Idealerweise: Einhausung mit Abluftreinigung (Staub-, Biofilter und saurer Wäscher)
 - sofortige Weiterverarbeitung
 - oder Verdichtung und Abdeckung des festen Anteils der separierten Gärreste bis zur Ausbringung oder Weiterverarbeitung

- **Trocknung:**
 - Einhausung und Abluftreinigung (Staub-, Biofilter und saurer Wäscher)
5.8 Gärrestlagerung

Abbildung 12: Darstellung Gärrestlagerung im Verfahrensfließbild und mögliche Emissionen

Überwachung

- siehe Abbildung 13
- Überprüfung der Maßnahmen der Ammoniakreduction bei offenen Gärrestlagerung,
- Abdeckung mit künstlichen inerten Schwimmkörpern, Folien oder festen Decken soweit genehmigt
- vollständig ausgebildete natürliche Schwimmsschicht
- kein Einsatz von Strohhäcksel (mögliche zusätzliche Methanemissionen)

Mögliche Ursachen für Emissionen:

- keine gasdichte Abdeckung des Gärrestlagers
- nicht ausreichende hydraulische Verweilzeit
- zu hohe Raumbelastung
- nicht ausreichender Abbau der abbaubaren Bestandteile des Substrates
 - aufgrund der Substratart
 - aufgrund der nicht ausreichenden Homogenisierung
- Rührwerksauslegung
- Rührwerksintervalle
- Prozessstörungen
Maßnahmen der Emissionsminderung:

- gasdichte Abdeckung der Gärrestlagerbehälter
- Nutzung der Gärrestauffbereitung zur Reduzierung der notwendigen Lagerkapazität (gasdichte Abdeckung)
- oder vollständigen Aufbereitung des Gärrestes
- ausreichende hydraulische Verweilzeit
- Reduzierung der Substratzufuhr
- natürliche Schwimmschichtbildung (Ammoniak)
- künstliche Abdeckung (Ammoniak)
- Substrataufbereitung für den besseren Substrataufschluss
- Unterspiegelbefüllung nicht gasdicht abgedeckter Behälter
- Verbesserung der Rührtechnik bzw. Rührintervalle
- Homogenisierung nur kurz vor der Ausbringung

Stand der Technik:

- gasdichte Abdeckung des Gärrestlagers und Anschluss an die Gasverwertung
- 150 Tage hydraulische Verweilzeit im gasdichten und an eine Gasverwertung angeschlossenen System (VDI 3475 - Blatt 4 - Emissionsminderung - Biogasanlagen in der Landwirtschaft - Vergärung von Energiepflanzen und Wirtschaftsdünger, 08.2010 (2014 bestätigt))
- Restmethanpotenzial < 1,5 % bei 20 °C über einen Zeitraum von 60 Tagen (VDI 3475 - Blatt 4 - Emissionsminderung - Biogasanlagen in der Landwirtschaft - Vergärung von Energiepflanzen und Wirtschaftsdünger, 08.2010 (2014 bestätigt))
- bei genehmigungspflichtigen Anlagen nach Nr. 9.36 (Lagerkapazität > 6500 m³) der 4. BImSchV und offener Lagerung
- Maßnahmen zur Emissionsminderung, die einen Emissionsminderungsgrad bezogen auf den offenen Behälter ohne Abdeckung von mindestens 80 vom Hundert der Emissionen an geruchsstarken Stoffen und an Ammoniak erreicht

technische und organisatorische Anforderungen:

- TA Luft Nr. 5.4.9.36
- VDI 3475 Blatt 4 Nr. 4.3.3
Abbildung 13: Vorgehensweise bei der Überprüfung des genehmigungskonformen Betriebes von Gärrestlagern
5.9 Gärrestabtransport

Abbildung 14: Darstellung Gärrestabtransport im Verfahrensfluss und mögliche Emissionen

Überwachung

- Vergleich der vorliegenden Transportvorgänge und Transportzeiten mit den genehmigten (vorausgesetzt Dokumentation ist vorhanden)
- Überprüfung der Fahrwege auf Befestigung und Sauberkeit
- Überprüfung der Befüllstation auf Sauberkeit
- Abtransport der Gärreste in geeigneten Fahrzeugen

Mögliche Ursachen für Emissionen:

- Überschreitung der genehmigten Transportvorgänge
- offene Transportbehälter
- unbefestigte Fahrwege oder verdreckte Fahrwege
- hohe Frequenz des Transportverkehrs
- ungünstige Straßenführung
- Abtransport außerhalb der genehmigten Zeiten (z.B. Nachtstunden)

Maßnahmen der Emissionsminderung:

- Transport in geschlossenen Behältern
- Begrenzung der maximalen oder der durchschnittlichen Transportvorgänge Abtransport zu bestimmten Zeiten (bspw. 6 – 22 Uhr)
- Befestigung und Sauberkeit der Fahrwege gewährleisten (u.U. Befeuchtung der Fahrwege)
- alternative Anfahrroute

Stand der Technik:

- Gärrestabtransport in geschlossenen Behältern
- manuelle oder automatische Dokumentation (bspw. mit Speicherfunktion in eine Bodenwaage integriert) der Abtransportvorgänge
6 Softwareumsetzung des Leitfadens in einer Checkliste

Um die Handhabung des Leitfadens insbesondere bei Vor-Ort-Kontrollen noch zu verbessern und somit die Akzeptanz bei den Überwachungsbehörden zu erhöhen, wurde er zusätzlich in einer dynamischen Checkliste auf Basis von EXCEL in elektronischer Form umgesetzt. Die Checkliste findet man zukünftig unter: https://www.umwelt.sachsen.de/umwelt/luft/48010.htm

In der dynamischen Checkliste ist es möglich, in den einzelnen Blöcken der Verfahrensschritte, sich passend zu der zu kontrollierenden Biogasanlage, die vorliegenden Verfahrenstechniken mit den spezifischen Überwachungsinhalten entlang der Verfahrensschritte zusammenzustellen und auszudrucken oder in elektronischer Form zum Überwachungstermin mitzunehmen. Mit diesem Werkzeug wird eine anlagenspezifische Zusammenstellung der zu überwachenden Schwerpunkte angestrebt. Diese Zusammenstellung könnte mit den Änderungen an der Anlage angepasst werden. Die Vielfalt der Verfahrenstechniken, die die Biogasbranche anbietet, ist im Rahmen des Leitfadens und der Checkliste nicht abbildbar, infolgedessen wird die Checkliste auf die meistverbreiteten Verfahrenstechniken ausgerichtet und eine Möglichkeit zur manuellen Einpflege von Inhalten geboten.

Sofern von Seite der zukünftigen Nutzer einer Weiterentwicklung der Checkliste gewünscht wird, so besteht die Möglichkeit (das Einverständnis der FNR vorausgesetzt) die Software in geeigneter Form zur Verfügung zu stellen.
Literaturverzeichnis

Lindenblatt, C., Dr. Wendland, M., Reitberger, F., Müller, C., Dr. Lebuhn, M., Bachmaier, H., et al. (2007). Biogashandbuch Bayern - Materialienband, Kapitel 1.6. (Bayerisches Landesamt für Umwelt, Hrsg.) Augsburg.

Herausgeber:
Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie (LfULG)
Pillnitzer Platz 3, 01326 Dresden
Telefon: + 49 351 2612-0
Telefax: + 49 351 2612-1099
E-Mail: lfulg@smul.sachsen.de
www. lfulg.sachsen.de
Das LfULG ist eine nachgeordnete Behörde des Sächsischen Staatsministeriums für Umwelt und Landwirtschaft.

Autor:
Waldemar Schavkan
Abteilung 5/Referat 52
Pillnitzer Platz 3, 01326 Dresden
Telefon: + 49 351 2612-5203
Telefax: + 49 351 2612-5099
E-Mail: waldemar.schavkan@smul.sachsen.de

Redaktion:
Torsten Moczigemba
Abteilung 5/Referat 52
Pillnitzer Platz 3, 01326 Dresden
Telefon: + 49 351 2612-5208
Telefax: + 49 351 2612-5099
E-Mail: torsten.moczigemba@smul.sachsen.de

Fotos:
Titelbild: LfULG, M.Grunert

Redaktionsschluss:
24.10.2018

Hinweis:
Die Broschüre steht nicht als Printmedium zur Verfügung, kann aber als PDF-Datei unter https://publikationen.sachsen.de/bdb/ heruntergeladen werden.

Verteilerhinweis
Diese Informationsschrift wird von der Sächsischen Staatsregierung im Rahmen ihrer verfassungsmaßigen Verpflichtung zur Information der Öffentlichkeit herausgegeben.